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Abstract: The effect of lead ions on the flotation activation of tantalum niobium ore (TNO) was studied 
by micro-flotation, adsorption capacity experiments, solution chemical composition calculations, and 
infrared spectral analysis. The experimental demonstrated that the combined collector of 
salicylhydroxamic acid (SHA) and ammonium dibutyl dithiophosphate (ADDP) resulted in a strong 
collection capacity for TNO in the presence of lead ions. The solution chemistry calculations determined 
that the dominant source of lead ions in the aqueous solution was Pb(OH)+ at a pH of 8, which was 
conducive to the adsorption and interaction of SHA and ADDP anions. In the lead ion activation system, 
the combined reagent co-adsorbed onto the TNO surface, causing a large negative shift in the zeta 
potential. The co-adsorption mechanism of the combined collector consisted of complex chemisorption 
between SHA and the TNO surface active particles, while the main adsorption of ADDP is 
physisorption. 

Keywords: tantalum niobium ore, Pb2+ ions activation, ammonium dibutyl dithiophosphate, co-
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1. Introduction 

Tantalum and niobium are rare metals with high melting and boiling points. They are widely used in 
numerous industries, such as aerospace and electronic energy, superconducting, biomedical 
engineering, and special steel industries, due to their corrosion resistance, superconductivity, unipolar 
conductivity, high strength at high temperatures, and their production of suction (Iborra-Torres et al., 
2020; Izawa and Nomura, 2020; Rodrigues et al., 2020; Unkrig et al., 2020). They have been employed in 
various materials, including electronics, precision ceramics, electro acousto-optic devices, and cemented 
carbide (Nanda et al., 2020; Song et al., 2020; Xiao et al., 2020; Zheng et al., 2020). Presently, the 
separation technology for purifying tantalum niobium ore (TNO) in foreign countries mainly adopts 
the gravity separation method. Flotation separation is used to recover tailings or fine-grained materials 
from this separation method (Deblonde et al., 2016; Liu et al., 2016; Purcell et al., 2018). However, the 
nature of domestic ore is complex, which needs to be treated in combination with gravity, magnetism, 
electricity, flotation, and metallurgy purification processes. Although the flotation method does not play 
a leading role in the separation process of TNO, it has a significant recovery effect on tantalum, niobium, 
tungsten, and tin ores with similar physical properties (Li et al., 2019; Liu et al., 2020; Thi Hong and Lee, 
2019). 

Tantalum niobium slime is not an ore, but it is the primary component for improving TNO recovery. 
Generally, gravity separation has a negligible effect on the recovery of fine-grained materials. Yuan et 
al. (2015) treated micro-fine TNOs from Songzi using the following process: classification, gravity 
concentration, magnetic separation, middling regrinding, and another gravity concentration. They 
obtained Ta2O5 and Nb2O5 with grades of 7.03% and 3.54% and recoveries of 49.42% and 35.46% 
respectively. Researchers have extensively studied flotation reagents for processing TNO. The common 
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collectors of tantalum and niobium are fatty acids, arsenic acids, phosphonic acids, hydroxamic acids, 
and cationic collectors. Among them, collectors with -COOH, -SO4H, and -SO3H functional groups 
exhibit strong collection ability but poor selectivity. Hydroxamic acids have low toxicity and good 
selection, but they require large dosages; phosphonic acids are strong collectors, but are sensitive to Fe2+ 
and Ca2+ ions and have mild toxicity; and arsenic acids have strong collection abilities, good selectivities, 
but high toxicity (Huang et al., 2020; Xiao et al., 2019a; Xiao et al., 2019b). Ji et al. (2004) analyzed the 
crystal structure of niobate rutile in Baiyunebo ore, as well as its infrared spectra before and after the 
interaction between niobate rutile and alkylhydroxamate within the ore. Their results showed that the 
niobate rutile and alkylhydroxamate both exhibit chemisorption, and the active particles (Nb5+, Fe3+, 
and Ti4+) on the niobate rutile surface combined with hydroxamate ions from alkylhydroxamate to form 
a stable, pentahydrate, meta-chelating ring. Compared with fatty acids, hydroxamic acids have a 
weaker ability to collect fine tantalum and niobium. This can be ascribed to their higher solubility with 
compounds formed by cations on the mineral surface, and its lower adsorption stability on the mineral, 
and its easy desorption from the mineral surface (Lv et al., 2017). Furthermore, the larger dosage of 
hydroxamic acid increases the beneficiation cost, so combining collector is a widely used strategy in 
flotation of oxdized minerals. Therefore, it is necessary to further investigate the flotation of TNO with 
modified fatty acids and combined collectors, and to explore the effect on recovering TNO. 
Salicylhydroxamic acid (SHA) is another hydroxamic acid flotation collector, which can form stable 
chelates with tungsten, tin, tantalum, niobium, and other metal oxides. Since a small amount of sulfide 
collectors, such as xanthate, can improve the production index when hydroxamic acid collectors are 
used, this paper attempts to explore the flotation behavior of sulfide collectors for oxidized ore. 

In particular, there is little research on the auxiliary collector ammonium dibutyl dithiophosphate 
(ADDP), which is commonly employed in the flotation of oxidized ore. Therefore, this paper also 
reports on the effects of lead ions on the activation mechanism of TNO when a combination of ADDP 
and SHA is applied. The results of this study provide insight for developing flotation theory of fine-
grained TNO. 

2. Materials and methods 

2.1. Materials and reagents 

Tantalum niobium ore (TNO) was obtained from a gravity concentration tantalum niobium concentrate 
of Ethiopian. After the samples were separated by graded magnetic separation, the ceramic ball mill 
was used to dry grind the samples until the particle size was less than 0.074 mm. Then, the deionized 
water was used for repeated cleaning and then dried in a vacuum drying oven for subsequent tests. The 
chemical compositions of TNO were determined by a wavelength dispersive X-ray fluorescence (XRF) 
using S4 Pioneer spectrometer (PANalytical B.V., Almelo, The Netherlands). The results of XRF are 
shown in Table 1. The results demonstrated that the purity of TNO in the sample were calculated to be 
90.25%. Sulphuric acid and sodium hydroxide of analytically pure grade were obtained from 
Sinopharm Chemical Reagent Co., Ltd. Salicylhydroxamic acid (SHA) and ammonium dibutyl 
dithiophosphate (ADDP) with industrial grade were purchased obtained from Zhuzhou Flotation 
Reagents. Ultra-pure water with a conductivity of 18.2 MΩ×cm was obtained from a USF-ELGA Maxima 
water purification system. 

Table 1. The results of chemical composition analysis of mineral samples (wt.%) 

Sample Ta2O5 Nb2O5 FeO MnO Li2O Other 
TNO 39.12 35.46 8.21 7.36 0.21 9.64 

2.2. Micro-flotation tests 

The single mineral flotation test was carried out in a 40 ml XRFⅡ aerated hanging cell flotation machine 
with a fixed rotating speed of 1992 r/min. The test steps were as follows: firstly, added 2.00 g single 
mineral and a certain amount of ultrapure water into the flotation cell. After stirring for 1 min, used 
HCl or NaOH to adjust the pH of the solution to the specified value, and continue stirring for 2 min. 
According to the needs of the test, a certain amount of activator was added, acting for 3 min; and then 
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the combined collectors were added in sequence of SHA and ADDP, stirring for 3 min respectively. 
Finally, after adding proper amount of foaming agent, the pulp volume was fixed to 40 ml, and stirred 
for 1min. Before flotation, the pH value of pulp was measured, and then the flotation was started by 
hand scraping. The flotation time was 3 min. The concentrates and tailings were weighed after filtration 
and drying, and the flotation recovery was then calculated. 

2.3. Zeta potential measurements 

The zeta potential of TNO surface was measured using a ZetaPALS instrument (Brookhaven, MS, USA). 
The samples were ground to less than 5 µm. The suspension was prepared by adding 20 mg of TNO to 
5 mL of distilled, deionized water containing 10−3 mol/L KCl as a supporting electrolyte. The resulting 
suspension was conditioned for 15 min during which suspension pH was measured. The pH was 
adjusted using either NaOH or H2SO4 over a pH range of 2–12. The reported results were the average 
of at least three full repeats of the experiments. 

2.4. Adsorption amount measurements 

The treatment time and order of addition of the reagents were the same as micro-flotation tests, except 
that the flotation was not carried out. The suspension was agitated for 5 min. After each step of the 
extraction process the samples were centrifuged and filtered to separate the liquid and solid phases. 
After washing twice with deionized water, the filter liquor was moved to a 100-mL volumetric flask. 
The adsorption amount was calculated by Equation (1): 

𝑄" =
$(&'(&))
+,,-

                                                                          (1) 

where, 𝑄" is the mount of Pb2+ ions or collectors adsorbed on the TNO surface (mg/g); 𝐶, and 𝐶" is the 
initial and residual concentration of Pb2+ ions or collectors (mg/L), respectively; 𝑉 is the volume (L); 𝑚 
is the mass of TNO (g). 

2.5. FT-IR analysis 

The SHIMADZU IR Affinity-IS Fourier transform infrared spectrometer were carried out with a KBr 
disk that contained 0.5% of the required sample to scan in the wave number range of 4000 to 500 cm-1 
at a resolution of 4 cm-1. To prepare the samples for FT-IR analysis, the Pb2+ ions, SHA and ADDP were 
20 times the dosage which were respectively added in the micro-flotation process, and the time and 
order for them adding was same to the micro-flotation. Finally, the solid samples were washed three 
times using deionized water with the same pH and allowed to dry at the room temperature to FT-IR 
analyses. 

3. Results and discussion 

3.1. Micro-flotation tests 

The effects of pulp pH and collector dosage on the flotation recovery of TNO were investigated (Fig. 1). 
Fig. 1a showed that when the concentration of SHA was 800 mg/L, the flotation recovery of TNO 
initially increased and then decreased with an increasing pH (Fig. 1a). When the pH was 8, a maximum 
flotation recovery of 70% was achieved. However, when ADDP was used as the flotation collector, the 
flotation recovery of TNO was less than 20% and did not fluctuate at the whole pH range. 

The relationship between the flotation recovery of TNO and the dosage of collector was determined 
(Fig. 1b). We found that when the pH was 8.0, the flotation recovery of TNO increased with an increase 
in SHA concentrations, and when the dosage of SHA was 1000 mg/L, the flotation recovery of TNO 
reached 82% and was relatively stable. A similar trend was observed as the concentration of ADDP was 
increased, where the flotation recovery of TNO slowly increased. However, a recovery more than 20% 
was never achieved, which indicated that the collection capacity of butylamine was very poor for TNO, 
and that it was not suitable as a flotation collector for TNO when it was along used. 

In general, the Pb2+ ion has a good activation effect on oxidized ore; therefore, its effects on the 
flotation recovery of TNO under various conditions were tested (Fig. 2). When the concentration of SHA 
was 200 mg/L, the flotation recovery of TNO first increased and then decreased as the pH continued to 
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rise (Fig. 2a). The maximum flotation recovery of 71.62% was obtained when the pH was 8.0. Similarly, 
when ADDP was used as the collector, the recovery of initially increased and then decreased with the 
increase in pH; the maximum flotation recovery of 41.36% was achieved when the pH was 7.9. 
Compared with Fig. 1a, it was found that when lead ions were present, the amount of collector was 
greatly reduced, indicating that the activation effect of the lead ions on tantalum niobium flotation was 
indisputable.  

 

Fig. 1. The effect of pH (a) and dosage of collector (b) on the flotation recoveries of TNO. a - C[SHA] = 800 mg/L, 
C[ADDP] = 1000 mg/L, C[MIBC] = 20 mg/L, b - pH=8.0 

When the pH of the pulp was 8, the flotation recovery of TNO gradually increased with collector 
concentration until it stabilized (Fig. 2b). When the dosage of SHA was 350 mg/L, the flotation recovery 
reached 90%, and when the amount of ADDP was 180 mg/L, the recovery was 48%. The flotation 
recovery of TNO first increased with the increase in Pb2+ concentration, and then it stabilized (Fig. 2c). 
When the concentration of lead nitrate reached 40 mg/L in the SHA flotation system, the TNO flotation 
recovery reached a stable value of proximately 75%. In the activation system with 100 mg/L of ADDP, 
the TNO recovery increased with the increase in Pb2+ concentration and when the concentration of Pb2+ 
was 60 mg/L, the recovery of TNO was 42%.  

 

Fig. 2. After activation of Pb2+ ions，the effects of pH(a), dosage of collect (b), dosage of Pb2+ (c) and ratio of 
C[SHA]:C[ADDP] on the recovery of TNO. a - C[SHA] = 200mg/L, C[ADDP] = 100 mg/L, C[Pb2+] = 6 0mg/L, 
C[MIBC] = 20 mg/L, b - pH = 8.0; C[Pb2+] = 60 mg/L, C[MIBC] = 20 mg/L, c - pH = 8.0, C[SHA] = 200 mg/L, 
C[ADDP] = 100mg/L, C[MIBC] = 20 mg/L, d - pH = 8, C[Pb2+] = 60 mg/L, C[SHA]+C[ADDP] = 200 mg/L, 

C[MIBC] = 20 mg/L 
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When the ratio of SHA concentration to ADDP concentration increased, the TNO recovery initially 
increased as well and then decreased (Fig. 2d). When the concentration ratio of SHA to ADDP was 1:1, 
the recovery of tantalum niobium flotation was 95.5%. These results suggested that combining SHA and 
ADDP in a 1:1 ratio improved the collection ability for TNO. 

3.2. Adsorption amount measurements of flotation reagents on the TNO surface 

To elucidate the relationship between the adsorption behavior of flotation reagents on the mineral 
surface and the flotation recovery, the relationship between the adsorption capacity of flotation reagents 
on the TNO surface and the pH value was studied (Fig. 3).  

When the solution pH was in the range of 7-10, the adsorption capacity of Pb2+ ions on the TNO 
surface was more than 95% in the absence of collector (Fig. 3a). When there were collectors present in 
the system, the adsorption capacity of Pb2+ onto the mineral surface decreased to some extent, indicating 
that the collectors had selective dissolution effect on the lead ions that had be adsorbed on the TNO 
surface. As for the difference in the adsorption capacity of Pb2+, it could be caused by differences in 
adsorption modes. The adsorption capacity of SHA and ADDP on the TNO surface was observed to 
clearly increase after the addition of lead ions, and the adsorption capacity curve was in good agreement 
with the recovery curve of single mineral flotation tests of TNO (Fig. 3b). 

The relationship between the pH and the adsorption capacity of the combined collector on the TNO 
surface was analyzed (Fig. 3c), where a lead ion concentration of 1.8×10-4 mol/L, SHA concentration of 
3.92×10-4 mol/L, and ADDP concentration of 2.32×10-4 mol/L. The comparison between Fig. 3b and Fig. 
3c indicated that the adsorption capacity of SHA and ADDP in the combined collector system was 
slightly higher than of the single collector systems, which could be ascribed to the synergistic effect 
between SHA and ADDP. 

 
Fig. 3. Adsorption amount of flotation reagents on the TNO surface as a function of pH. a - Pb2+ ions, b - single 

collector, c - combined collector. C[Pb2+] = 1.8×10-4 mol/L, C[SHA] = 3.92×10-4 mol/L, C[ADDP] = 2.32×10-4 
mol/L 

3.3. Calculation of chemical composition of reagents 

The lead component plays a key role in the flotation of TNO, so it is of great theoretical significance to 
study the existence form and physicochemical properties of lead nitrate in aqueous solutions and at the 
TNO/water interface. In general, metal ions in aqueous solutions are ionized and hydrolyzed to 
produce homogeneous precipitates, or they react with collectors to form complexes or other precipitates 
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(Xiao et al., 2018; Xiao et al., 2017). At the mineral/water interface, metal ions or their hydroxides 
precipitate and bond with the mineral lattice, adsorbing onto the mineral surface. Lead ions are 
hydrolyzed in aqueous solution, and their forms vary greatly under different pH conditions. Through 
the chemical composition calculations of the solution, the concentrations of various lead components at 
different pH values can be determined. 

The initial concentration of lead ion was set to 1.8 × 10-4 mol/L, and calculated the logarithm of each 
component concentration of lead ion in the effluent solution as shown in Fig. 4a. 

The initial SHA concentration was set to 3.92 × 10-4 mol/L, and the logarithm diagram of each 
subsequent concentration of SHA in the solution was calculated (Fig. 4b). The hydroxyl groups in SHA 
molecules connected with nitrogen atoms are easy to ionize hydrogen ions, making it weak acidic. With 
the change of pH value, the ionization equilibrium of hydrogen ions will change accordingly.  

 When the pH of the solution was less than 7.4, the dominant component in the solution was SHA, 
and when it was greater than 7.4, the dominant component in the solution was the SHA anion. When 
the solution pH was greater than 9, the concentration of OH- in the solution gradually increased, which 
resulted in competitive adsorption between the hydroxide ion and the SHA anion. This results in a 
reduced flotation recovery rate for the lead ion/SHA system. Furthermore, when the solution pH was 
equal to its pKa value, the molecular concentration of the SHA anion and SHA in the solution were the 
same, resulting in the easy formation of a molecular association complex that could co-adsorb onto the 
mineral surface. 

 
Fig. 4. The chemical composition of Pb2+ ions (a) and SHA (b) as a function of pH value 

3.4. Zeta potential measurements 

The adsorption of cations or anions onto a mineral inevitably leads to a change in the surface charge. 
The potential relationship between the pulp pH and the TNO surface after the chemical reaction of the 
activation system was studied (Fig. 5). Fig. 5a showed that the isoelectric point (IEP) of TNO in ultrapure 
water was 3.5. After adding 50 mg/L of lead ions, the zeta potential curve moved an overall positive 
shift, and IEP increased to 3.9. In the activation system, when SHA and ADDP were both added, the 
zeta potential curve shifted in a negative direction, indicating that the collector anions adsorbed onto 
the TNO surface. When the pH was less than 7.5, the negative shift of the curve of ADDP was greater 
than that of SHA. This could be because that the dominant component of ADDP in this pH range was 
the ADDP anion, while that of SHA was mainly its molecular form (Fig. 4b). When the solution pH was 
greater than 7.5, the negative shift of the curve of SHA was greater than that of ADDP, because the 
dominant component of SHA began to convert an anion in this pH range. All the lead components in 
the solution may adsorb onto the TNO surface. In fact, when the pH was less than 7.5, the dominant 
component of lead in the solution was Pb2+, whose adsorption onto the TNO surface resulted in a 
increase in the surface zeta potential (Fig. 4a). With the increase in pH, Pb(OH)+ gradually became the 
dominant component in solution. Since Pb(OH)+ has very high activity and it easily chemisorbs onto 
the TNO surface, which covers the surface with more positive ions and causes the zeta potential to shift 
in a positive direction. When the solution pH increased to 9.01, the lead ions began to form hydroxide 
precipitates, and as the pH value continued to increase above 11, Pb(OH)3-gradually became the 
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dominant component in the system. This compound had difficultly adsorbing onto the TNO surface. 
Therefore, it has litter effect on the surface potential of TNO.  

The zeta potential diagram of the TNO surface after the activation system is affected by the pulp 
pH and the combined collector, where the collector concentration was found to be half that the value 
when a single collector was used (Fig. 4b). After adding the combined collector, the zeta potential curve 
on the TNO surface showed an overall negative shift, indicating the adsorption of the combined 
collector onto the TNO surface. When the total amount of collectors was constant, the negative zeta 
potential shift of the TNO surface by the combined collector was larger than that caused by two single 
collectors, which indicated that the adsorption effect on the mineral surface was superior to that of the 
two single collectors. 

 
Fig. 5. Zeta potential of the TNO surface before and after reagent treatment. a - C[Pb2+] = 50 mg/L, C[SHA] = 200 

mg/L, C[ADDP] = 200 mg/L, b - C[Pb2+] = 50 mg/L, C[SHA] = 100 mg/L, C[SHA] = 100 mg/L 

3.5. FT-IR analysis 

Infrared light causes, the functional groups or chemical bonds of organic molecules to vibrate and 
absorb the light. Different functional groups or chemical bonds display different absorption frequencies 
for infrared light, and changes in their positions are reflected in their infrared spectrum. By comparing 
the infrared spectra of SHA and ADDP before and after their interaction with TNO (Fig. 6), information 
regarding changes in their chemical bonds or functional groups can be observed. 

Fig. 6a showed the infrared spectrum of SHA before and after its interaction with the Pb2+ ions. 
The characteristic band of SHA was located at 3289 cm-1 corresponds to the superposition of the O-H 
and N-H stretching vibrations (Meng et al., 2020). At 3116 cm-1 and 1618 cm-1, the stretching vibrations 
of N-H and C=O, respectively, could be found (Xiong et al., 2020). The bands at 1524.18 cm-1 and 1489 
cm-1 represented the benzene ring C=C stretching vibrations; those at 1247 cm-1 and 1101 cm-1 
correspond to the benzene ring C-N stretching vibration; and the bands at 906 cm-1, 744 cm-1, and 620 
cm-1 indicated the benzene ring C-H  out-of-plane deformation vibrations. After the reaction between 
SHA and Pb2+ ions, the characteristic band of SHA shifted from 3289 cm-1 to 3443 cm-1; the C=O band 
shifted from 1618 cm-1 to 1383 cm-1; the C-N stretching vibration band and the C-H bending vibration 
band of the benzene ring also shifted (Meng et al., 2020). Although no new absorption peaks were found, 
the observed shifts indicated that when SHA acted on the TNO surface in the activation system, the Pb2+ 
ions may be acting as the active adsorption particles (Zhao et al., 2020). 

Fig. 6b showed the infrared spectrum of ADDP before and after its interaction with the Pb2+ ions. 
At 3167 cm-1 the stretching vibration band of the N-H bond, while those at 2960 cm-1, 2805 cm-1, and 
1466 cm-1 represented the antisymmetric stretching, symmetric stretching, and antisymmetric 
deformation vibration bands, respectively, of the -CH3 moiety (Zhang and Qin, 2015; Zhang et al., 2014). 
The band at 1397 cm-1 corresponded to the bending vibration of N-H; that at 993 cm-1 was the stretching 
vibration band of the P-O-C bond; and the bands at 664 cm-1 and 564 cm-1 represented the strong and 
weak absorption bands, respectively, of the P-S2 stretching. Similarly, to that of SHA, there were no new 
absorption peaks observed after the reaction between ADDP and the Pb2+ ions, but small shifts of several 
characteristic ADDP peaks indicated that when ADDP acted on the TNO surface in the activation 
system, the lead ions may act as the active particles for adsorption. 
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Furthermore, the infrared spectrum of tantalum niobium before and after interaction with Pb2+ ions 
were obtained (Fig. 6c), where the bands at 837 cm-1, 706 cm-1, and 646 cm-1 were all characteristic peaks 
of TNO. After Pb2+ ion treatment, the characteristic peaks of the infrared spectrum remained unchanged, 
which indicated a lack of chemisorption between the Pb2+ ions and the TNO surface. 

The interactions of TNO with a single reagent and a combined reagent under the activation system 
were monitored via infrared spectrum as well (Fig. 6d). The results suggested that there were no 
obvious changes in the absorption band of the TNO surface with only ADDP present, which indicated 
that there was no chemisorption of the ADDP onto the TNO surface under the activation system. 
However, small shifts in the characteristic SHA bands were observed after its interaction with TNO. 
The stretching vibration of the C=O moiety in the SHA molecule appeared at 1580 cm-1; the stretching 
vibration of the C=C bonds in the benzene ring appeared at 1490 cm-1 and 1370 cm-1; and the stretching 
vibrations of C-N bond in SHA appeared at 1240 cm-1 and 1140 cm-1. These results indicated that there 
was chemisorption of the hydroxamic acid onto the surface of TNO in the activated system, and it was 
speculated that there may be multiple-ring chelates forming between the hydroxamic acid and Mn2+ 
particles on the TNO surface, according to the molecular structure. The absorption peak of the combined 
reagents was similar to that of the activated system with only SHA. However, the characteristic peak of 
the former was stronger than that of the latter, indicating that SHA was chemically adsorbed onto the 
TNO surface when the combining reagents were used, while ADDP primarily acted on the mineral 
surface through physisorption.  

Based on the experimental results of the present study, we construct a model for the adsorption of 
Pb2+ and SHA on the TNO surface. Fig. 7 showed a schematic illustration of the adsorption model. When 
Pb2+ and SHA were added to the TNO suspension, the lead species either adsorbed on the TNO surface, 
increasing the number of active sites.  

 
Fig. 6. FT-IR of reagents and TNO before and after treatment 

 
Fig. 7. Schematic illustration of the adsorption model for Pb2+ and SHA on the TNO surface 
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4. Conclusions 

In summary, we investigated the effects of Pb2+ ions on the flotation behavior of TNO with SHA and 
ADDP as a combined collector and revealed the interaction mechanism between these flotation reagents 
and the TNO surface. 

When SHA and ADDP were combined in a 1:1 ratio, the flotation recovery of TNO reached 96.23%. 
Furthermore, the SHA and ADDP combined collector adsorbed onto the TNO surface, resulting in a 
large negative shift in the zeta potential. The adsorption mechanism of the combined collector was 
proposed to involve complex chemisorption between SHA and TNO surface active particles, while the 
ADDP primarily acted on the mineral surface via physical adsorption. 
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